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1 Introduction

1.1 Preface

Every measured value is accompanied by an uncertainty’ - an iron
rule that should have been internalized after the first semester at
the latest. This premise seems intuitive and well-founded.

In practice, however, this principle often first falls victim to the
most diverse justifications, which are not infrequently based on
incomplete knowledge of the experiment, but are usually justified
by a qualitative success.

Hubble1 based the thesis about the expansion of the universe on
1 Hubble, E.P.: A Relation between Distance and Radial Velocity
among Extra-Galactic Nebulae, (1929) Proc. Natl. Acad. Sci. USA
15, p. 168–173the observation of surrounding galaxies in the near range, which

was too small in astronomical scales, respectively superimposed
by other relative motions. The assertion turned out afterwards to
be correct in his favor. Wrong, on the other hand, were countless
discoveries such as that of polywater2, of the polymer structure of

2 Fedyakin, N.N.: Change in the Structure of Water during
Condensation in Capillaries, (1962) Colloid Zhournal 24, p. 497

water. It would be wrong to attribute historical negative examples
to a rather qualitative way of working, which would seem unthink-
able today. The statistically correct and comprehensible way of
working is the foundation of the building of science today as it was
then. But since the departure from this basic idea appears again
and again in various form, a discreet reference to its importance
should be made now and then 3 - quite in the spirit of the experi-

3 Vaux, D.L.: Research methods: Know when your numbers are
significant, (2012) Nature 492, pp. 180–181

menter.

1.2 Acknowledgements

This script is based on the lecture ’Statistische Methoden im Fortge-
schrittenen-Praktikum’, by Volker Büscher given at Albert-Ludwigs-
Universität Freiburg.
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1.3 Literature

The following books are recommended for further reading:

Cowan, G.: Statistical Data Analysis, Oxford Science Publications
Brandt, S.: Datenanalyse, Spektrum Akademischer Verlag
Barlow, R.J.: Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley-VCH
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2 Basics

2.1 Probability density

dx

f (x)

The probability P to find a value in the interval [x, x + dx] is given
by the probability density function (pdf ) f (x):

P(x′ ∈ [x, x + dx]) = f (x) · dx.

The pdf by definition is normalized to unity∫
Ω

f (x)dx = 1

on the sample space Ω.
The probability for x′ to be below b ∈ Ω[−∞, ∞] is

P(x′ ≤ b) =
b∫

−∞

f (x)dx = F(b),

and correspondingly, the probability to find x′ in the interval [a, b]
is:

P(a ≤ x′ ≤ b) =
b∫

a

f (x)dx = F(b)− F(a).

With the primitive function constructed in this way, we obtain the
cumulative distribution F(x) of the probability density function

lim
x→∞

F(x) = 1

lim
x→−∞

F(x) = 0

f (x):

F(x) :=
x∫

−∞

f (x′)dx′.
1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

F(x)
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2.2 Expectation values

The expectation value E(x) of a random variable x following a
probability density function f (x) is defined as:

E(x) := µ =

∞∫
−∞

x · f (x)dx.

The expectation value E(h(x)) of an arbitrary function h(x) is:

E(h(x)) =
∞∫

−∞

h(x) · f (x)dx.

2.3 Central Moments and Variance

Expectation values of the function

hl(x) = (x − c)l

are called l-th moments of the variable x at point c.

The special cases of the l-th moments αl around the expectation
value µ are given by:

α0 =

∞∫
−∞

(x − µ)0 f (x)dx = 1,

α1 =

∞∫
−∞

(x − µ)1 f (x)dx =

∞∫
−∞

x f (x)dx − µ = 0,

α2 =

∞∫
−∞

(x − µ)2 f (x)dx.

The variance is defined as

normalization

(expectation value)

variance
Contains information about the

scatter of a random variable x around
its mean value µ

α2 = E
(
(x − µ)2

)
= Var(x) = σ2(x).

The square root of the variance
√

Var(x) is called the standard de-
viation σ(x). Mean and standard deviation are generally the most
important quantities for the statistical description of a series of
measurements. The uncertainty in an experiment, the measurement
error, is usually identified with the standard deviation.

The variance can be expressed in terms of expected values as
follows:

σ2(x) = E
(
(x − µ)2

)
= E(x2)− (E(x))2 .
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Higher Moments

The moments αl for l > 2 are called higher moments. Higher
powers put more and more weight on the tails of the distribution.

α3 = E
(
(x − µ)3

)
.

The quantity

skewness
a measure of the asymmetry of the

probability distribution of x

S := α3/σ3

is called skewness. It is the first non-zero odd central moment.
It weights values to the right and left of the expected value with
different signs. If S is exactly zero, the distribution is symmetric.
For S < 0 a distribution is called left-skewed, which means it
decreases more slowly to the left than to the right. For S > 0 it is
called right-skewed.

S > 0

µ

S = 0

µ

S < 0

µ

α4 = E
(
(x − µ)4

)
The kurtosis K is defined as

kurtosis
A measure of the "tailedness" of the

probability distribution due to the 4-th
power in the exponent

von gr. κυρτωσις = curved, archingK := α4/σ4 − 3.

The fourth central moment of a Gaussian distribution is exactly 3.
By subtracting 3, the kurtosis is normalized to the extent to which a
distribution is narrower (K < 0), that is, more centered around the
mean, or wider (K > 0) than a Gaussian distribution.
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2.4 Functions of two Random Variables

For a two-dimensional probability density function f (x, y) of the
random variables x, y we can write

P(x′ ∈ [x, x + dx], y′ ∈ [y, y + dy]) = f (x, y) · dx dy

with the normalization∫ ∫
Ω

f (x, y)dx dy = 1.

The one-dimensional projections are called marginal distributions

fy(y) =
∞∫

−∞

f (x, y)dx,

fx(x) =
∞∫

−∞

f (x, y)dy,

with the expectations values µx and µy.
The expectation value of a two-dimensional function h(x, y) is

defined analogously to the one-dimensional case:

E(h(x, y)) =
∞∫

−∞

∞∫
−∞

h(x, y) f (x, y)dx dy.

The variances with respect to one variable are given by:

σ2(x) :=
∞∫

−∞

∞∫
−∞

(x − µx)
2 f (x, y)dx dy,

σ2(y) :=
∞∫

−∞

∞∫
−∞

(
y − µy

)2 f (x, y)dx dy.

If one considers both variables at the same time, one speaks of
the covariance:

cov(x, y) :=
∞∫

−∞

∞∫
−∞

(x − µx)
(
y − µy

)
f (x, y)dx dy.

covariance

Covariance is a measure of the joint variability of two random
variables. If the greater values of one variable mainly correspond
with the greater values of the other variable, and the same holds
for the lesser values (that is, the variables tend to show similar be-
havior), the covariance is positive. In the opposite case, when the
greater values of one variable mainly correspond to the lesser val-
ues of the other, the covariance is negative. The strength of the cor-
realtion is quantified with the dimensionless correlation coefficient
ρ which is normalized to the relative widths σx,y: correlation coefficient

ρ(x, y) :=
cov(x, y)
σ(x)σ(y)

.

10



CHAPTER 2. BASICS 2.5. FURTHER PARAMETERS: MEDIAN UND QUANTILES

ρ takes values from −1 (negative correlation) to 1 (positive cor-
relation). In these cases, a variation in x leads to an equally large
variation in y, and the opposite for negative ρ.

The variables x and y are said to be independent if the joint
distribution can be written as independent variables

f (x, y) = fx(x) · fy(y).

The correlation coefficient for independent variables is ρ = 0, i.e.
independent variables are uncorrelated. However, the converse
does not hold, i.e., a correlation coefficient ρ = 0 does not mean that
x and y are independent. Independent variables are uncorre-

lated. The converse does not hold.

2.5 Further parameters: Median und Quantiles

xm

• The mode xm is the value at which the distribution takes its
maximum, i.e.,

xm = arg max
x∈Ω

f (x).

• The value x0.5 at which the cumulative distribution function
takes the value 1/2 is called the median:

F(x0.5) =

x0.5∫
−∞

f (x)dx = 0.5.

• More generally, the quantile xq is the value at which the cumula-
tive distribution function takes the value q ≤ 1:

F(xq) =

xq∫
−∞

f (x)dx = q. x0.1 x0.9

• The Full Width Half Maximum (FWHM) specifies the width of
the distribution at half the height of the maximum. In this way,
the tails of the distribution are ignored.
For a Gaussian distribution one has:

FWHM = 2.35 σ. FWHM

11
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2.6 Description of Discrete Data

The data taken from an experiment (sample) constitute a data set
x1, ..., xN . The underlying probability density f (x) is not always
known.

Distribution and parameters of the distribution must be deter-
mined from the measured data.

Underlying distr. data set

probability density f (x), F(x) h(x) (frequency)

expectation value E(x) = µ mean x̄

variance σ2(x) = Var(x) variance σ2(x1, ..., xN)

Sample Mean:

x̄ :=
1
N

N

∑
i=1

xi

The sample mean is an unbiased estimator for the true mean µ:

lim
N→∞

= µ

Variance:

Var(x1, ..., xN) = σ2
N(xi, µ) =

1
N

N

∑
i=1

(xi − µ)2

In general, the expected value µ is not known a priori, so µ must
be estimated using the mean x̄. However, the quantity σ2

N(xi) =

1/N
N
∑

i=1
(xi − x̄)2 does not provide an unbiased estimator of the

variance. It can be shown that an unbiased estimator is given by:

σ2
N−1(xi) :=

1
N − 1

N

∑
i=1

(xi − x̄)2.

Covariance:

cov(x, y) :=
1

N − 1

N

∑
i=1

(xi − x̄)(yi − ȳ)

12



3 Probability distributions

3.1 Binomial distribution

Consider an experiment with two possible outcomes A and A:

P(A) = p,

P(A) = 1 − p = q.

The probability that in n experiments the outcome A occurs k

A A

0 1 2 3 4
k

P n = 5 und p = 0,25

times is given by:

P(k, p, n) =
(n

k

)
pk(1 − p)n−k. Binomial distribution

The binomial distribution has the following properties:

E(k) = n · p,

σ2(k) = n · p(1 − p),

σ(k) =
√

n · p(1 − p). Variance und standard deviation of the
binomial distribution

3.2 Poisson distribution

In the limit of an infinite number n of experiments, a vanishing
probability p, and a finite product n · p = λ, the binomial distribu-
tion approaches the Poisson distribution1: 1 after Siméon Denis Poisson, France,

mathematician and physicist

lim
n→∞

P(k, p, n) = P(k, λ) =
λk

k!
e−λ.

0 1 2 3 4 5 6
k

P
λ = 1, 5

A classical application example for the Poisson distribution is the
number of radioactive decays in a given time period. For the Pois-

son distribution P(k, λ) holds: P(k, λ) heißt Wahrscheinlichkeits-
dichte der Poisson-Verteilung. Es gilt:

∞

∑
k=0

P(k, λ) = 1,

E(k) = λ,

σ2(k) = λ.

Normierung

Erwartungswert

Varianz
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3.3 Gaussian distribution

The Gauss distribution2 or also normal distribution is of central 2 after Johann Carl Friedrich Gauss,
Holy Roman Empire of German
Nations,

mathematician, astronomer, geodesist
and physicist

importance in physics. Deviations of measured values from the
mean value can be described by a Gaussian distribution in good
approximations. Therefore, the error analysis as well as the error
propagation is based to a large extent on the Gaussian distribu-
tion. It arises from the bimomial distribution for a large number

P(x, µ, σ)

µ

σ

µ + σµ − σ

if samples n and from the Poisson distribution for large expectation
values λ.

binomial distribution Poisson distribution

Gaussian distribution

n → ∞, p → 0, np = λ

n → ∞ λ → ∞

P(k, p, n) P(k, λ)

The Gaussian distribution is an example of continous probabilty
distribution. It is a symmetric distribution characterized by its
mean µ and standard deviation σ:

P(x, µ, σ) =
1√

2π σ
e−

1
2 (

x−µ
σ )

2

.

E(x) = µ,

Var(x) = σ2.

For a normally distributed measured value x, the probability to

Gaussian distribution

find x within ±nσ around the true value µ is given by:

[µ − σ, µ + σ] [µ − 2σ, µ + 2σ] [µ − 3σ, µ + 3σ]

68, 3 % 95, 4 % 99, 7 %

3.3.1 Central limit theorem

If xi are independently distributed random variables with mean µ

and variance σ2, then in the limit n → ∞ the sum

X :=
1
n

n

∑
i=1

xi

is normally distributed with mean µ and variance σ2/n.

14
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3.3.2 Two-dimensional Gaussian distribution

For independent random variables x, y following Gaussian distri-
butions for which (without loss of generality) µx = µy = 0 , the
probability density is given by

P(x, y) = P(x)P(y)

and one can thus write:

P(x, y) =
1

2πσxσy
e
− 1

2

(
x2

σ2
x
+

y2

σ2
y

)
.

Contours of constant probability density are ellipses. The ellipse
enclosed by [−σx,+σx] and [−σy,+σy] is given by

x2

σ2
x
+

y2

σ2
y
= 1.

In vector notation the equation for the ellipse reads:

Ellipsengleichung

(x, y)

 1
σ2

x
0

0 1
σ2

y

(x
y

)
= 1,

that is
x⃗⊺ B x⃗ = 1.

The matrix B is the inverse of the covariance matrix C3. 3 for which we assume here that x and
y are uncorrelated

σx

σy

The probability density for a two-dimensional Gaussian can then
be written as4: 4 this also holds for non-vanishing

covariances, see chapter 4

P(x, y) =
1

2
√

det C
e−

1
2 x⃗⊺ C−1 x⃗.

3.4 Uniform distribution

A large number of measurements can be described by the uniform
distribution. Thus, it represents the simplest case of a detector
which has a homogeneous response probability on the sample
space in the interval [a, b]:

P(x) =

c = 1
b−a a ≤ x ≤ b

0 sonst

The uniform distribution has the following probabilities:
a b

1
b−a

x

P(x)

E(x) =
1
2
(a + b),

σ2(x) =
(b − a)2

12
.

The standard deviation of a uniform distribution is σ = b−a√
12

.

expectation value

variance

15



CHAPTER 3. PROBABILITY DISTRIBUTIONS 3.5. BREIT-WIGNER DISTRIBUTION

3.5 Breit-Wigner distribution

By a Breit5-Wigner6 distribution or also Lorentz curve7 resonances 5 after Gregory Breit, Ukraine,
physicist

6 after Eugene Wigner, Kingdom of
Hungary, physicist
7 Hendrik Antoon Lorentz, Nether-
lands, mathematician and physicist

can be described. This is particularly relevant when the natural
linewidth can be resolved, as in the case of spectral lines or energy
spectra of short-lived particles. The special case for an unshifted
curve a = 0 with a half-width of Γ/2 = 1 is also called Cauchy
distribution8. 8 after Augustin-Louis Cauchy,

France, mathematicianP(x, a, Γ) =
1

2π

Γ

(x − a)2 +
(

Γ
2

)2 .

The Breit-Wigner distribution distribution has the following proper-
ties:

E(x) = a,

σ2(x) = ∞ =

∞∫
−∞

x2P(x)dx =
1
π

∞∫
−∞

x2

1 + x2 dx.

The variance and all higher moments diverge and are thus unde-

expectation value

variance

fined because the function does not decay fast enough. Therefore,
for the Breit-Wigner distribution, the width is given by the Full-
Width-Half-Maximum (FWHM):

FWHM := |x2 − x1| = Γ f (x1) = f (x2) =
1
2

f (x)

Γ

a

P(x)

16
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3.6 Convolution of probability distributions

A convolution9 describes the effect of the resolving power of an 9 from lat. convolvere = to roll up

apparatus on an observable. If the probability density of the ob-
servables is f (x) and the one of the measurement uncertainty g(y)
and if the measured value z = x + y, then the convolution integral
describes the probability density h(z)

h(z) =
∞∫

−∞

f (t)g(z − t)dt =
∞∫

−∞

f (z − t)g(t)dt.

An important example is the convolution of two Gaussian dis-
tributions N(x; µ1, σ1) and N(y; µ2, σ2). This results in a Gaussian
distribution N(z; µ, σ) with

µ = µ1 + µ2, σ =
√

σ2
1 + σ2

2 .

2 4 6 8

1

2

3

·10−2

σ1

−4 −2 2 4

1

2

3

·10−2

σ2

2 4 6 8

0.5

1

1.5

2

2.5

·10−2

√
σ2

1 + σ2
2

The covolution of a exponential distribution with a Gaussian results
in an exponential distribution with a modified scale parameter.
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4 Treatment of measurement uncertain-
ties

Preliminary remark: Measured values as interpreted in a statistical
sense are often assumed to follow a Gaussian distribution around
the true value. The measurement uncertainty σ is therefore identi-
fied with the standard deviation σ of a Gaussian distribution.

4.1 Uncertainty of the mean

For N repeated measurements x1, ..., xN with uncertainties σi = σ

the arithmetic mean x is defined as

x =
1
N

N

∑
i=1

xi.

The uncertainty of the arithmetic mean is given by

arithmetic mean

σ(x) =
σ√
N

.

For measured values with different uncertainties σi one used the
weighted mean:

xG =
∑ xi

σ2
i

∑ 1
σ2

i

.

The uncertainty of the weighted mean is

σ2(xG) =
1

∑ 1
σ2

i

.

The weighted mean is often used to combine different independent
measurements.
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4.2 Error propagation

Suppose the observables x and y are independent and normally
distributed around the true values µx and µy with standard devia-
tions σx and σy, respectively. We are interested in the variation of a
dependent quantity z = f (x, y). With Gaussian error propagation
one estimates the variance σ2

z by a first order Taylor expansion1 : 1 Under the assumption that

• higher order terms can be ne-
glected

• derivatives at µx , µy can be ap-
proximated by the derivatives at
x, y

f (x, y) = f (µx, µy) +
δ f
δx

∣∣∣∣
µx ,µy

(x − µx) +
δ f
δy

∣∣∣∣
µx ,µy

(
y − µy

)
+ ...

In this approximation the expectation value E[z] = E[ f (x, y)] can be
written as

E[ f (x, y)] ≈ f (µx, µy)

The variance can be written as

Var[ f (x, y)] = E[( f (x, y)− f (µx, µy))
2]

= E

( δ f
δx

∣∣∣∣
µx ,µy

(x − µx) +
δ f
δy

∣∣∣∣
µx ,µy

(
y − µy

))2


=

(
δ f
δx

)2
E[(x − µx)

2] +

(
δ f
δy

)2
E[(y − µy)

2] + 2
δ f
δx

δ f
δy

E[(x − µx)(y − µy)].

The covariance cov(x, y) ≡ E[(x − µx)(y − µy)] vanishes for inde-
pendent x and y and we obtain

Var[ f (x, y)] =
(

δ f
δx

)2
σ2

x +

(
δ f
δy

)2
σ2

y .

The uncertainty of z = f (x, y) can hence be written as

σz =

√√√√( δ f
δx

∣∣∣∣
x

)2
σ2

x +

(
δ f
δy

∣∣∣∣
y

)2

σ2
y .

4.3 Covariance und correlation

If x and y are not independent of each other, their correlation ρ

must be considered in the error propagation. It indicates how the
change of one parameter relates to the other and can also be calcu-
lated via the multivariate variance. For the covariance we have

cov(x, y) = ρ σxσy,

so that the variance of f can be calculated as

covariance

σ2( f (x, y)) =
(

δ f
δx

)2
σ2

x +

(
δ f
δy

)2
σ2

y + 2
(

δ f
δx

)(
δ f
δy

)
cov(x, y)︸ ︷︷ ︸

ρ σxσy

.

The covariance results either

• from the experimental setup. An arrangement of two detectors,
for example, where an event is detected either in one detector or
necessarily in the other, implies a correlation of ρ = −1 on the
count rates.
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CHAPTER 4. TREATMENT OF MEASUREMENT UNCERTAINTIES 4.4. COVARIANCE MATRIX

• from a known functional relationship. This is particularly rele-
vant when multiple fit parameters are used from a curve fit, as
these are rarely uncorrelated.

• from the scatter of the data. The correlation is then calculated as
described in chapter 2.6.

Examples for correlated data:

ρ ≃ +1

x

y

ρ ≃ −1

x

y

ρ = 0

x

y

The correlation coefficiant can take values

−1 ≤ ρ ≤ +1.

In the case of ρ > 0 one speaks of positive correlation, in the case
of ρ < 0 of negative correlation. If ρ = 0 the variables are uncorre-
lated.

4.4 Covariance matrix

For the case where a function f depends on the variables x1, ..., xn,
the bivariate dependence of the parameters is expressed by the
covariance matrix C. This contains on its diagonal the variances of
the measured variables xi. The off-diagonal components are the
covariances cov(xi, xj):

C =


σ2

x1
cov(xi, xj)

. . .
cov(xj, xi) σ2

xn

 =


σ2

x1
ρ σxi σxj

. . .
ρ σxj σxi σ2

xn

 .

In linear approximation the uncertainty of f is then given by

σ2( f (x, y)) =
n

∑
i,j=1

(
δ f
δxi

δ f
δxj

Cij

)

oder in Vektorform:

σ2( f (x, y)) = ∇ f ⊺ · C · ∇ f .

For the general case of a set of m functions y⃗ = ( f1, ..., fm) de-
pending on x1, ..., xn one has a (co-)variance for each pair fk, fl and
the uncertainty σ2( f (x, y)) is generalized to the error matrix Ekl :

Ekl =
n

∑
i,j=1

 δ fk
δxi

δ fl
δxj

ρij σxi σxj︸ ︷︷ ︸
Cij

 .

With the transformation matrix G

Gki :=
δ fk
δxi

one obtains in vector form:

E = G · C · G⊺.

dim C = (n, n)
dim G = (m, n)
dim E = (m, m)
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4.5 Covariance matrix and systematic uncertainties

If two measured quantities x1, x2 have statistical uncertainties
σx1 , σx2 and a common systematic uncertainty s

x1 ± σx1 ± s,

x2 ± σx2 ± s,

the two qantities are correlated

cov(x1, x2) = E(x1, x2)− E(x1)E(x2) = s2.

The corresponding covariance matrix is

C =

(
σ2

x1
+ s2 s2

s2 σ2
x2
+ s2

)
.

4.6 Estimators

The task in the evaluation of an experiment is to compare a general
and simple model, which represents some kind of physical law or
regularity, with the measured data. The distribution function de-
scribing the data is generally not known - but its form is, which is
defined by a set of parameters λ⃗ = (λ1, ..., λn). A simple example is
radioactive decay - the complete data set depends only on the vari- N(t) = N0 · e−t/τ

able lifetime. From the sample one has to determine an estimator ⃗̂λ

of λ⃗ and its variance σ(⃗λ̂). The requirements for a good estimator
S(x1, ..., xn) are that it has the following properties:

• unbiased: The expectation value for the estimator of a parameter
should be equal to the parameter (regardless of the number of
measured values n):

E [Sλ(x1, ..., xn)] = λ.

• consistent: The estimator should converges to the true value in
the limit of an infinite number of measurements:

lim
n→∞

λ̂ = λ.

• efficient: The standard deviation should be as small as possible:

E
[
(S − λ)2

]
= σ2(S) < σ2(Si),

where Si is any estimator of λ.

Estimator for the mean of a Gaussian distribution
For a Gaussian distribution, the mean x = 1/n ∑ xi is an unbi-

ased estimator for the true mean. It can be shown that its variance
σ2 is also minimal and thus the mean meets the above criteria.
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Estimator for the variance of a Gaussian distribution

The estimator for the variance

σ2 =
1

N − 1

N

∑
i
(xi − x)2

would not be an unbiased estimate with the factor 1/N. Illustra-
tively, one degree of freedom of the data set has already been used
for the determination of the mean x, which is no longer available
for the determination of further parameters.
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4.7 χ2 distribution

The χ2 distribution can be defined as follows: If the random vari-
ables x1, ..., xn follow a Gaussian distribution with mean µ = 0 and
standard deviation σ = 1, then the sum z of the n squares

z = χ2 = x2
1 + ... + x2

n

follows a χ2 distribution with n degrees of freedom. The χ2 distri-
bution is given by

f (z; n) =
zn/2−1e−z/2

2n/2Γ
( n

2
) (z ≥ 0)

where Γ(x) is the Gamma function. Mean and variance are

E (z) = n, Var (z) = 2n.

The χ2 distribution plays an important role as a measure of the
quality of the description of measured data by a model. If one has a
data set of n normally distributed measurements yi at the locations
xi with standard deviations σi and a model prediction f (x; λ⃗) with
predefined parameters, then for repeated measurements of the data
set the quantity

χ2 =
n

∑
i=1

(yi − f (xi; λ⃗))2

σ2
i

follows a χ2 distribution with n degrees of freedom if the model
correctly describes the expected values ⟨yi⟩. If the m parameters
have been determined by a fit to the data, the χ2 defined in the
previous equation follows an χ2 distribution with n − m degrees of
freedom.

number of degrees of freedom nF
when fitting a model to data: number
of measured values n minus the
number of parameters m: nF = n − m
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Application: Hypothesis testing

Assuming that the model is correct and purely statistical errors
are present, the χ2 value of the fit should follow a χ2 distribution
in repeated measurements of the data set. The probability P of ob-
taining a worse (i.e., larger) value than the observed χ2 for a given
number of n degrees of freedom is called the p-value. It results
from the cumulative distribution function:

p-value = P(χ2
nF
) = 1 − F(χ2

nF
).

Thus, the p value is the probability of obtaining a χ2 value larger
than the observed χ2 value, assuming that the model used is cor-
rect. If the p-value is small, the hypothesis that the model used
describes the data can be rejected. An arbitrary but commonly used
criterion is pvalue < 0.05. Each degree of freedom is expected
increase the χ2 by 1:

χ2

n
≈ 1.

The value χ2/doF2, also called χ2
red, reduced Chi2, should thus be 2 dof = degrees of freedom

close to 1 and is often used to estimate the quality of a model. If
the value is significantly different from 1, this can be due to several
reasons:

• the used model is wrong or insufficient,

• the Gaussian statistic for the distribution of uncertainties is an
incorrect assumption,

• there are unconsidered systematic uncertainties,

• the assumed standard deviation σ is too large (χ2 becomes too
small) or too small (χ2 becomes too large).
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4.8 The Method of least squares

The least squares method is intended to provide an unbiased and
consistent estimator. For n data points xi, yi ± σi, the function
f (x; λ⃗) is determined by minimizing χ2 . This provides the best
estimate for the parameters λ⃗:

arg min
λ⃗

(χ2) = arg min
λ⃗

(
n

∑
i=1

(yi − f (xi; λ⃗))2

σ2
i

)
.

For m parameters λ1, ..., λm you get m equations:

dχ2

dλi
= 0.

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Example: Straight line fit

f (x; λ⃗) = f (x; a1, a0) = a1x + a0

χ2 =
n

∑
i=1

(yi − a1xi − a0)
2

σ2
i

.

Under the assumption that σi ≡ σ for i = 1...n one obtains

dχ2

da0
=

1
σ2 (−2)∑(yi − a1xi − a0) = 0,

dχ2

da1
=

xi
σ2 (−2)∑(yi − a1xi − a0) = 0,

as estimator

â1 =
xy − x̄ȳ

x2 − x2
=

cov(x, y)
σ2(x)

â0 = y − â1x

with uncertainties

σ2(â1) = ∑
(

δâ1

δxi

)2
σ2

i −→ σ2(â1) =
σ2

n
(

x2 − x2
) ,

σ2(â0) =
σ2x2

n
(

x2 − x2
) ,

cov(â1, â0) = − σ2x

n
(

x2 − x2
) .

Important: The covariance of â1 und â0 depends on the expecta-
tion value x. For a straight line given by

f (x; a1, a0) = a1 (x − x) + a0

one obtains the uncorrelated solutions

â1 =
xy

x2
, σ2(â1) =

σ2

nx2
,

â0 = y, σ2(â0) =
σ2

n
.
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Generalization:
arbitrary functions und covariance matrices

Consider values yi measured at loactions xi

(xi, yi) with i = 1...n,

which are not independent, i.e., the covariance matrix C has non-
vanishing off-diagonal components cov(yi, yj). These measured
values yi shall be described by a function f (x; λ⃗) which takes the
values µi = f (xi; λ⃗) at the positions xi. The χ2 function then reads:

χ2 = (⃗y − µ⃗)⊺ C−1 (⃗y − µ⃗) .

where µ⃗ = (µ1, ..., µn). The minimum χ2 is determined by dχ2

dλi
= 0,

i.e., the gradient of χ2 with respect to the parameters vanishes.

x⃗ =


x1
...

xn

 y⃗ =


y1
...

yn



µ⃗ =


f (x1; λ⃗)

...
f (xn; λ⃗)



covariance matrix C:

C =


σ2

y1
cov(yi , yj)

. . .
cov(yj, yi) σ2

yn


parameter
λ⃗ = (λ1, ..., λm)In general, numerical minimization algorithms are needed to

find the minimum of the χ2 distribution. However, for functions
which are linear in the parameters, a closed-form solution exists.
For such a function we can write

f (x, λ⃗) =
m

∑
k=1

ak (x) λk,

and we obtain

example of a function which is linear
in the parameters

f (x, λ⃗) = λ0 + λ1x + λ2x2

but not f (x, λ) = e−λt

µ⃗ = A λ⃗ with Aij = aj(xi),

so that the χ2 function reads

χ2 = (⃗y − A⃗λ)⊺C−1 (⃗y − A λ⃗).

The minimum χ2 solution then is:

⃗̂λ = (A⊺C−1A)−1A⊺C−1︸ ︷︷ ︸
G

y⃗

The covariance matrix Cλ of the parameters results from the trans-

∇λ χ2 = −2A⊺C−1
(

y⃗ − A λ⃗
)
= 0

A⊺C−1A λ⃗ = A⊺C−1y⃗

formation of the covariance matrix of the measured values:

Cλ = G C G⊺.

One obtains:
Cλ = (A⊺C−1A)−1.
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4.9 Confidence intervals

The result of a measurement is

λ̂ ± σ
(
λ̂
)

What does this mean?
What is the correct interpretation of this result?

Where is the true value?

The frequentist approach:
This approach is based on the frequentist definition of probabil-

ity. The sample space Ω is defined in advance. The probability of
an event E is defined as the limit of the relative frequency nE/nG,
where nE is the observed number of event E and nG is the total
number of observations:

P(E) = lim
nG→∞

nE
nG

.

In the frequentist approach, λ̂ ± σ
(
λ̂
)

is a statement about the
constructed interval, which is to be understood in such a way that
when the measurement is repeatedly performed, on average a pro-
portion P of the constructed intervals contains the true value. In
other words, the statement λ ∈ [λ̂− σ, λ̂+ σ] is true with a probabil-
ity of 68%. The concept of a probability for the value of a parameter
does not exist in the frequentist approach.

The Bayesian approach3: 3 after Thomas Bayes, England,
mathmatician and Presbyterian

minister
This approach is based on the Bayesian notion of probability,

according to which P(H) indicates the degree of belief of a subject
in a hypothesis H. In the case of a parameter λ to be determined,
the degree of belief for a given value of λ is given by a probabil-
ity density P(λ). In order to interpret a result, it must always be
considered under its predefined probability, the prior probability
density. This is fixed by the experimenter and is thus subject to his
subjective judgment. A measurement of a parameter λ together
with the prior distribution leads to a new probability distribution
P′(λ). The apparent arbitrariness in the choice of the a prior distri-
bution is often cited as a criticism of the Bayesian approach.
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Confidence intervals:

In the frequentist approach, the probability density of the mea-
sured values with a fixed parameter is used to determine confi-
dence intervals. In this method, the limits are determined in which
the measured value lies with the given probability.

beob. Wert

a bλ̂

The confidence interval [a, b] is defined in a way that

∞∫
λ̂beob

g
(
λ̂, a
)

dλ̂ = α

λ̂beob∫
−∞

g
(
λ̂, b
)

dλ̂ = β

hold for the given probabilites α, β. The interval [a, b] contains the
true value with a probability P = 1 − α − β. The probability P is

a is a lower limit for λ
b is an upper limit for λ

called confidence level.

4.10 Maximum likelihood method

While the χ2-minimization method is based on the assumption
of normally distributed measured values, the maximum likelihood
method applies to general probability densities. If measured values
x1, ..., xn are distributed according to a probability density f (x, λ⃗),
the likelihood function L is the product of the probability densities
for each xi:

L(x, λ⃗) =
n

∏
i=1

f (xi, λ⃗).

For the likelihood function, one considers the measured values as

likelihood function

fixed and the parameters as variables. The maximum likelihood

principle now states that the best estimate ⃗̂λML for the parameters λ⃗

is the one that maximizes the likelihood function:

⃗̂λML = arg max
λ⃗

L(x, λ⃗)

Numerically, it is often advantageous to use the logarithm of the
likelihood function, the log-likelihood function:

L(x, λ⃗) = ln L(x, λ⃗) =
n

∑
i=1

ln f (xi, λ⃗). log-likelihood function
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The best estimator ⃗̂λ is given by the solutions to the equations

δ

δλj
L(xi, λj) = 0, j = 1, ..., m

where m is the number of parameters.
Example:
Radioactive decay is described by f (t, τ) = 1/τ · e−t/τ where the

only parameter is the mean lifetime τ. The log-likelihood function
then reads:

L (t1, ..., tn, τ) =
n

∑
i=1

(
− ln τ − ti

τ

)
.

Maximizing the log-likelihood function gives the best estimator τ̂ of
the lifetime:

δL
δτ

=
n

∑
i=1

(
− 1

τ
+

ti
τ2

)
= 0 ⇒ τ̂ =

1
n

n

∑
i=1

ti = t.

The maximum likelihood estimator for
the lifetime in the radioactive decay
is just the arithmetic mean of the
measured times.
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Maximum likelihood for histogramms

0 2 4 6

N

For small sample sizes, such as those found in histograms with
few entries per bin, one cannot assume a normal distribution for
the number of entries per bin. Either a binomial distribution or a
Poisson distribution must be assumed, see chapter 3. Thus, the χ2

method cannot be used and the maximum likelihood method is
then the method of choice.

The probability for an event to appear in bin i is

pi (⃗λ) =

xi+∆xi/2∫
xi−∆xi/2

f (x; λ⃗) dx ≈ f (xi)∆xi

It is usually a good choice to assume Poisson-Statistics. The total
number of events then fluctuates according to the Poisson distribu-
tion P(Ntot; N̄tot) around the mean N̄tot which can be either a model
prediction or a free parameter. The expectation value for the num-
ber of entries in bin i predicted by the model is µi (⃗λ) = N̄tot pi. The
likelihood function can then be written as

L(N1, ..., Nn; λ⃗) ≡ L(⃗λ) =
n

∏
i=1

P(Ni; µi (⃗λ)) =
n

∏
i=1

µi (⃗λ)
Ni

Ni!
e−µi (⃗λ)

where Ni is the number of observed events in bin i. If we now go to
the log-likelihood function and drop terms that do not depend on
the parameters, we obtain the function

L̃(⃗λ) =
n

∑
i=1

Ni ln µi (⃗λ)− µi (⃗λ) = −N̄tot +
n

∑
i=1

Ni ln µi.

The parameters which maximize this function are the maximum-
likelihood estimators.
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Variance of the maximum-likelihood estimator

To determine the variance of the maximum likelihood estimator
ˆ⃗λ, one can expand the log-likelihood function around its maximum:

L
(

x1, ..., xn, λ⃗
)
≈ L

(
x1, ..., xn, ˆ⃗λ

)
+ 0︸︷︷︸

1. Ord.

+
1
2 ∑

j,k

(
λj − λ̂j

) (
λk − λ̂k

) δ2 L
δλjδλk

∣∣∣
λ=λ̂︸ ︷︷ ︸

−Bjk

+ ...

If a maximum likelihood estimator exists, L
(

x1, ..., xn, λ⃗
)

ap-
proaches a normal distribution in the limit of large number n of

measurements. Correspondingly, then L
(

x1, ..., xn, λ⃗
)

is a quadratic

function in λ⃗. This is called asymptotic normality. Thus, around the
maximum of the log-likelihood function we get

L
(

x1, ..., xn, λ⃗
)
≈ Lmax −

1
2

(⃗
λ − ˆ⃗λ

)⊺
B
(⃗

λ − ˆ⃗λ
)

and therefore for the likelihood function:

L
(

x1, ..., xn, λ⃗
)
≈ Lmax e−

1
2

(⃗
λ− ˆ⃗λ

)⊺
C−1

(⃗
λ− ˆ⃗λ

)
.

Here, too, the covariance matrix C can be identified with the inverse
of the matrix B as in chapter 3.3. For uncorrelated parameters the
standard deviation results from the diagonal elements

σ2
λj

= Cjj = B−1
jj =

(
− δ2 L

δλjδλj

∣∣∣
λ=λ̂

)−1

.

For the special case of only one parameter this reduces to

σ2
λ = − 1

δ2 L
δ2λ

∣∣∣
λ=λ̂

.

The uncertainty of λ can alternatively be estimated using the values
λ̂ − σ−

λ and λ̂ + σ+
λ , for which the log-likelihood function takes the

value ln Lmax − 1
2 :

ln L(λ̂ ± σλ) = ln Lmax −
1
2

This usually yields asymmetric uncertainties. However, in the limit
of a large data sample σλ = σ−

λ = σ+
λ holds.

4.11 Bayesian parameter estimation

In Bayesian parameter estimation, all the information about the
parameters λ⃗ = (λ1, ..., λn) to be estimated is contained in the
posterior probability function P(⃗λ|x). Using Bayes’ theorem, this
can be written as

P(⃗λ|x) = L(x|⃗λ)π(⃗λ)∫
L(x|⃗λ)π(⃗λ) d⃗λ
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where as before the likelihood function is given by L(x|⃗λ) =

∏n
i=1 f (xi, λ⃗). The prior probability distribution π(⃗λ) describes

the knowledge about the parameters to be estimated before the
measurement. The formula for P(⃗λ|x) then specifies how this
knowledge is updated based on the measured values xi. The de-
nominator

∫
L(x|⃗λ)π(⃗λ) d⃗λ does not depend on λ⃗ and thus can be

considered a normalization factor that can be determined by nor-
malizing the posterior probability distribution to 1. If a constant
prior distribution is chosen, the parameter vector λ⃗ for which the
posterior distribution has a maximum corresponds to the maximum
likelihood estimator. A constant likelihood distribution cannot be
normalized and is thus a so-called improper prior distribution.

As an example, consider two measurements of a parameter λ.
Given λ, let the probability density for measuring a certain value
x1 be given by a normal distribution N(x1; λ, σ1) with mean λ and
standard deviation σ1. If we now consider this distribution in the
Bayesian approach as a function of λ at fixed x1, we get as prior
distribution

π(λ) = N(λ; x1, σ1) =
1√

2πσ1
e
− (λ−x1)

2

2σ2
1 .

Taking into account the second measurement x2 of λ (with standard
deviation σ2) we get

P(λ|x2) ∝ L(λ|x2)π(λ) = N(λ; x2, σ2)π(λ)

= N(λ; x2, σ2)N(λ; x1, σ1).

The product of two normal distributions is proportional to a normal
distribution and we get as posterior distribution

P(λ|x2) = N(λ; µ, σ)

with

µ =
1

1
σ2

1
+ 1

σ2
2

(
x1

σ2
1
+

x2

σ2
2

)
und σ =

1
1

σ2
1
+ 1

σ2
2

.

Thus, in this case, the Bayesian approach yields the formula for the
weighted mean from section 4.1.
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5 Practical tasks

The practical tasks are provided in the form of jupyter notebooks.
These notebooks are to be completed with text and code. The note-
books with complete solution will then has to be sent to the tutor.
The programming language to be used is python with appropriate
packages (numpy, matplotlib, ...).

The practical tasks to be worked on are selected by the tutor..
Here are some possible tasks

Error propagation

1. In this task, Sympy is to be used to determine analytical ex-
pressions for the uncertainty of a dependent quantity y =

f (x1, ..., xn), where the measured values xi may be correlated
(S01_error_prop_01.ipynb).

Method of least squares

1. Linear least-squares fit
If the fit function is linear in the fit parameters, the fit can be
determined analytically. This is to be done in this task
(S01_least_squares_01.ipynb)

2. Simultaneous χ2 fit
Here a model is simultaneously fit to several different data sets
(S01_least_squares_02.ipynb).

Maximum likelihood method

1. Mean lifetime in an exponential decay
Here the maximum likelihood methods is studied in more detail
using the exponential decay as an example
(S01_ml_01.ipynb).

2. Unbinned maximum likelihood fit
A simple maximum likelihood fit with only one parameter
(S01_ml_02.ipynb).

Bayesian parameter estimation

1. Determination of the posterior distribution for the parameter p
of a binomial distribution
(S01_bayes_01.ipynb).

Basic knowledge of Python is required for this experiment. The
AP Python Introduction Course provides a good introduction. For

https://jupyter.org/
https://www.physi.uni-heidelberg.de/Einrichtungen/AP/Python.php
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numerical minimization in χ2 and maximum likelihood fits, the
iminuit package is useful. The jupyter notebooks can be processed
on your own computer or on the KIP jupyter server.
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https://iminuit.readthedocs.io/en/stable/
https://jupyter.kip.uni-heidelberg.de/
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