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1 Introduction

During this advanced physics lab course, you will read out a noise thermometer with a
two-stage SQUID amplifier circuit, both cooled in a liquid helium can at roughly 4 K.
You will learn a few basics about low temperature physics and cryogenic liquids as well
as macroscopic quantum effects like superconductivity and superfluidity while discussing
and preparing the experiments with your tutor. Besides an introduction to SQUIDs and
noise thermometers, this manual provides several experiments that will teach you how to
operate dc SQUIDs as amplifiers in flux-locked-loop mode and obtain the temperature of
a resistance from its noise.

SQUIDs (superconducting quantum interference devices) are very sensitive magnetome-
ter that are susceptible to tiny variations of the magnetic field. Based on the Josephson
effect, they contain a superconducting loop interrupted by Josephson junctions. A dc
SQUID has two Josephson junctions and can be used to amplify a small current change
to a voltage change. Thus, you will use SQUIDs to read out a noise thermometer. The
niobium SQUIDs that are used during this lab course were fabricated in our clean room
and are optimized to read out our low temperature X-ray detector arrays based on MMCs
(metallic magnetic calorimeters) in a two-stage flux-locked-loop circuit.

Noise thermometers can acquire the temperature from the current noise density of
a resistance which is a result of the Brownian motions of the electrons. They do not
need a calibration due to their fundamental dependency of physical properties. More
importantly, they can be used to measure the temperature in a very large range over
multiple order of magnitudes at very low temperatures. During this lab course, you
measure the noise of an aluminum wire and fit the expected current noise density on the
measured noise spectrum to acquire the temperature.
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2 Theory

To be able to understand the later described devices used during this lab course, it is
necessary to have some basic knowledge of superconducting quantum interference devices
and noise thermometers. This section will start with an introduction to the physical
theories necessary to understand the working principle of superconducting quantum
interference devices. Afterwards the fundamental physics behind noise thermometers is
explained.

2.1 Superconducting Quantum Interference Devices

2.1.1 Superconductivity

The investigation of resistances at very low temperatures and thus the discovery of
superconductivity was possible by the achievements of Heike Kamerlingh Onnes to
liquefy helium. This achievement allowed for measurement down to near absolute zero
temperature by evaporation cooling of liquid helium. Onnes studied samples made out
of gold and platinum. He found that the resistance of both metals is approaching a finite
value. This finite value depends on the purity and quality of the sample. From this
observations he concluded that ideally samples should have a vanishing small resistance
at lowest temperatures. During the time of H.K. Onnes the only metal that was available
in very high purity was mercury, therefore he continued his studies with high purity
mercury samples. In 1911 Onnes observed a sudden jump of the resistance for mercury
below a certain temperature. The result of this measurement are shown in figure 1.

Figure 1: Sudden drop of the resistance of mercury at a critical temperature TC [5].

From his measurements H.K. Onnes defined a new state of matter, called superconduc-
tivity: Superconductivity is the vanishing electrical resistance below a certain transition
temperature TC.
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Meißner-Ochsenfeld-Effect From the above definition of superconductivity, a supercon-
ductor looks like a perfect conductor. However it turns out that a superconductor is not
just a perfect conductor. To have a closer look at this, it is assumed that below a certain
temperature TC the conductor switches to the superconducting or perfect conducting
state. Figure 2 shows the two different possibilities of changing the temperature of a
perfect and a superconducting sample within a magnetic field.

Figure 2: Comparison of the behavior of a perfect conductor and a superconductor in a
magnetic field [5]. Left: the magnetic field is switched on after cooling below
TC. Right: samples are cooled below TC after switched on the magnetic field.

In both cases displayed above the samples are cooled down below the critical temper-
ature TC, but in case of the left figure, the magnetic field is switched on after cooling
below TC, whereas in case of the right figure, the field is switched on before the transition
to the superconducting state. At the end the external field is switched of in both cases.
For the sequence displayed on the left side of figure 2, switching on the magnetic field
induces screening currents at the surface of the samples for both, the superconductor and
the perfect conductor. These Lenz screening currents produce a magnetic field (in the
Maxwell equations we would treat it as magnetization M) opposite in direction and equal
in size to the internal magnetic field Hi inside the sample, leading to a vanishing magnetic
flux density Bi inside the sample. After turning off the magnetic field everything returns
to the initial state.

Let’s now look at the experimental sequence on the right side, where a magnetic field
is turned on at a temperature T > TC at which both samples are still in the normal
conducting state. Both samples are then cooled down below TC, leading to very different
magnetic field configurations. For the perfect conductor cooling through TC doesn’t
change anything, because only changes of the magnetic flux density, ∂B

∂t 6= 0., can induce
Lenz currents. In contrast, when cooling a real superconducting material exposed to
a magnetic field from its normal to its superconducting state, it spontaneously expells
magnetic flux density from its volume by starting screening currents beneath its surface,
just like the ones that are produced in the sequence on the left side. This spontaneous
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expelling of field on cooling through TC is called Meißner-Ochsenfeld Effect. When turning
off the magnetic field, the magnetic flux density inside the superconductor remains zero.
In contrast, in the perfect conductor screening currents are now induced according to
Lenz’s law, which conserve the magnetic flux density.

We summarize: Superconductors (of type-I) are not only perfect conductors, but also
perfect diamagnets up to a material-dependent critical field HC.

BCS-Theory The breakthrough in the theoretical understanding of superconductivity,
was achieved in 1957 by the theory of John Bardeen, Leon Cooper, and John Robert
Schriefer, known as the BCS theory. According to this theory, electrons condense pair-
wise into a new state in which they are described by a well defined common macroscopic
wave-function. The theory itself emerged in two steps:

1. Cooper proved that two electrons at the surface of the Fermi sphere can form a
so called cooper pair in case that there is an attractive interaction between them.
Independent of the strength of the interaction between the two electrons, at low
enough temperature those pairs would be stable.

2. Bardeen, Cooper and Schriefer applied many-body quantum mechanics to show
that N electrons forming Cooper pairs condense in a bosonic state described by a
single macroscopic wave function.

Figure 3: Schematic drawing of attractive interaction between two electrons. The inter-
action is mediated by an exchange of a phonon between the two electrons.

Knowing that two electrons, being both negatively charged, repel each other, how can
we motivate an attractive force between conduction electrons in a solid? As sketched
in figure 3, the negative charge of one electron attracts the positively charged ion-cores
within a lattice. This attraction leads to a movement of the ions towards the electron’s
track. The fact that the speed of the electron is much faster than the movement of the
ions the maximum positive charge carrier density is reached when the electron is far away.
The excess of positive charge density then attracts another electron. As the first electron
is already far away and as there are many electrons in between, the Coulomb interaction
of the two electrons is strongly suppressed, making it possible, that the small attractive
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force caused by the distortion of the lattice can dominate. This existence of an attractive
force between the Fermions is the necessary ingredient, which leads to the formation of
Cooper pairs, makes the Fermi-Gas state become instable and causes a phase transition
into the BCS state.

Properties of Cooper pairs As electrons are fermions, the wave function needs to be
antisymmetric on the exchange of two fermions. In simple elemental superconductors the
spins of the two electrons couple to the singlett state, S = 0, being antisymmetric on the
exchange of two electrons. Accordingly the quantum number of the angular momentum
needs to be even, and L = 0 is energetically preferred in elemental superconductors. In
addition we can state that Cooper pairs are composite Bosons with a mass of MCP = 2me−

and a charge of QCP = 2 qe− . Below Tc all these bosonic pairs are described by the same
macroscopic ground-state wave function:

Ψ = Ψ0e
iφ(r). (1)

The φ (r) describes the phase of the wave function. From this common quantum me-
chanical wave function that describes the Cooper-Pairs within a superconductor two
important effects follow: i) the flux quantization within a superconducting loop and
ii)the Josephson-effect. These two effects will be described in the following sections.

2.1.2 Flux Quantization

To explain the flux quantization, one has to look at a closed loop made of a superconducting
material. An example for such a loop is shown in figure 4. The loop is cooled below TC

while being exposed to a magnetic flux density B. At the superconducting transition the
magnetic field-lines are expelled from the volume of the superconducting ring material,
but not from within the loop, as there is no reason. When the external magnetic field
is then switched off, the flux through the loop becomes trapped inside the loop, as the
magnetic flux density lines are not allowed to penetrate the superconductor when it is in
the superconducting state. Screening currents build up beneath the surfaces of the ring
in order to conserve the enclosed magnetic flux.

The phase difference ∆φ between two points 1 and 2, along a certain contour is defined
by the integral

∆φ =

2∫
1

∇φ (r) ds. (2)

In case of the superconducting loop shown in figure 4 the integration contour is closed.
Using this and the fact that the wave function of a superconductor needs to be well
defined, we find that the phase difference needs to be 0 or multiples 2π, ∆φ = 2πn. To
calculate the flux trapped within the loop shown in figure 4, the equation

µ0λL
2

∮
L

jds =
~
e

∮
L

∇φ ds− 2

∮
L

Ads (3)
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Figure 4: Superconducting loop penetrated by a magnetic flux [5]. Inside the loop the
closed integration line is displayed.

can be evaluated along a closed contour L deep inside the superconducting ring, where
the current density is j = 0, to fulfill Bi = 0. In equation 3, λL stands for the London
penetration depth and j for the current density. Using equation 3 and Stokes theorem, it
is possible to solve for the magnetic flux enclosed by the superconducting ring and we
find

Φ = n
h

2e
= nΦ0. (4)

Here, Φ0 represents the magnetic flux quantum Φ0 = h/2e = 2, 067 · 10−15Wb [5]. Ac-
cording to equation 4, the magnetic flux within a superconducting loop is an integer
multiple of the magnetic flux quantum Φ0. This quantization was experimentally proofed
and the result of an experiment with a short piece of superconducting tube is displayed
in figure 5:

Figure 5: Magnetic flux trapped within a hollow superconducting cylinder [5]. Depending
on the magnetic field, a flux of integer multiple of Φ0 is trapped.
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2.1.3 Josephson effect and Josephson Junction

Another important effect resulting from the fact that the Cooper pairs in a superconductor
are described by one unique macroscopic wave function is the so called Josephson-effect.
This effect was predicted by Josephson in 1962. To discuss the Josephson effect we want
to consider two superconductors separated by a very thin insulating barrier, as sketched
in figure 6.

Figure 6: Josephson junction made of two superconductors separated by a very thin
insulating barrier [XYZ]. In both superconductors, S1 and S2, the Cooper pairs
are described by a unique wave function Ψ1 and Ψ2, respectively. The numbers
n1 and n2 represent the desity of Cooper pairs on the respective side.

For both superconductors, as in general true for two coupled systems, it is possible to
set up a Schrödinger equation:

i~Ψ̇1 = µ1Ψ1 + κΨ2 i~Ψ̇2 = µ1Ψ2 + κΨ1. (5)

In both equations the Ψ1 and Ψ2 represent the wave function of the respective super-
conductor, whereby their chemical potential is described by µ1 and µ2. The κ in both
equations corresponds to the coupling between both superconductors and is determined
by the width of the barrier between them.

To solve these two equations, the following assumptions have to be made: The chemical
potentials µ1 and µ2 of both superconducting electrodes are equal in case of no voltage V
applied across the contact. In case of a non zero voltage V 6= 0 the relation between the
chemical potentials is given by µ2 − µ1 = −2eV . Regarding the density of Cooper-Pairs
in both superconductors one can assume n1 and n2 to be equal and given by ns, if both
superconducting electrodes are made of the same material.

Inserting the unique wave function given in equation 1, results in two equations:

ṅs1 =
2κ

~
ns sin (φ2 − φ1) = −ṅs2 (6)

~
(
φ̇2 − φ̇1

)
= − (µ2 − µ1) = 2eV. (7)

Here, the difference between the phases of both superconductors could be identified as
the phase difference Θ = Φ1 − Φ2.
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Equation 6 is describing a time dependent change of Cooper-pairs and therefore of
charge carriers. Such a change of charge carriers could be associated with a current IS.
By introducing the critical current I0 = ns2κ/~ of a Josephson contact, equation 6 can
be rewritten:

IS = I0 sin (Θ) . (8)

This equation is called first Josephson equation and describes the phase dependency of
the electrical dc current through a Josephson contact. Therefore the behaviour is called
dc Josephson effect.

In the case that the voltage drop across the barrier is non zero, the behaviour of the
contact changes according to equation 7. This leads to time-dependent evolution of the
phase difference between both superconducting electrodes. The evolution is described by
the second Josephson equation:

Θ̇ =
2eV

~
= ωj . (9)

According to the equation, the phase is oscillating with a frequency ωj, the Josephson
frequency. Due to this oscillation and according to equation 8 the current flowing through
the contact is also oscillating with the Josephson frequency. Therefore this behavior is
called ac Josephson effect [8].

Non Linear Behaviour of a Josephson Junction As discussed above the two wave
functions of both superconducting electrodes overlap within the insulating barrier. This
could be compared to bonds between two atoms forming a molecule. As for a molecule
one can define the so called binding energy. It is also possible to define the Josephson
coupling energy for a Josephson junction. This Josephson coupling energy denotes the
energy stored within a Josephson junction and could be calculated by integrating the
power over time:

EJ (Θ) =

t0∫
0

ISV dt =
Φ0I0

2π
(1− cos (Θ)) . (10)

Due to the fact that the integral in equation 10 contains the super current IS the
Josephson coupling energy also depends on the phase difference between the supercon-
ducting electrodes. The total potential energy or Gibbs energy of a Josephson junction
is than composed of the intrinsic energy of the junction and the applied force multiplied
with a generalized coordinate:

Epot (Θ) = E − Fx. (11)

In the case of a Josephson junction the rear part of equation 11 is meant to be the
energy that is added or subtracted by applying an external current to the junction.
Therefore, the force F can be identified with the externally applied current I and the
generalized coordinate x has to be the integral of the voltage drop across the junction.
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The intrinsic energy of a Josephson junction is given by the Josephson coupling energy.
Inserting this into equation 11 the potential energy of a Josephson junction is given by

Epot (Θ) = EJ (Θ)− I
(

Φ0

2π
Θ + c

)
. (12)

The potential energy is shown in figure 7 for two different values of the externally
applied current I.

Figure 7: Potential energy of a Josephson junction for an externally applied current I = 0
and I < IC [8].

For the case of I = 0 the potential energy is oscillating sinusoidal around a certain
value of Epot, displayed in figure 7 by the upper curve. For currents that are unequal
to zero, the potential energy becomes phase dependent as displayed in the second curve
in figure 7. Depending on the value of I, the potential is tilted by a certain angel. Due
to this tilting, the shape is called tilted washboard potential. As long as the externally
applied current is below the critical current I0 there are still potential minima, but if I
becomes larger than I0 all minima vanish and an imaginary phase particle sitting in the
potential could freely move downwards to lower energy [3, 8].

2.1.4 Voltage State of a Josephson junction

The Josephson junction described so far was regarded to be in a zero voltage state,
meaning that all current I flows as Cooper pairs through the junction. The mode of a
Josephson junction, that is described in the following differs, as the externally applied
current I is larger than the critical current IC. In this situation only a part of the current
I is carried by Cooper pairs. Therefore the total current I flowing through the Josephson
junction is given by

I = IS + IN + ID + IF. (13)

The components, apart from the super current IS of equation 13 are explained in the
following.
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Normal Current IN The normal current IN flowing through a Josephson junction can,
in general, be described by Ohm’s law:

IN = GNV, (14)

where GN stands for the normal conductance of the Josephson junction. In general the
normal conductance of a Josephson junction depends on the temperature of the junction
as well as the voltage drop across the junction:

GN = GN (V, T ) (15)

Talking about the value of the normal conductance GN four cases must be discussed:

1. For temperatures T close to the critical temperature TC of the junction, i.e. T ≤ TC,
the required energy to break a Cooper pair is much smaller than the thermal energy
kBT . Therefore almost all Cooper pairs are broken up and the concentration of
quasi-particles is close to the density of electrons in the normal conducting state.
In this state the resistance of the Josephson junction is close the the normal state
resistance

IN = GNV with GN =
1

RN
(16)

2. If the voltage across the Josephson junction is higher than gap voltage Vg of
the Josephson junction, the external current source (electrical current) provides
sufficient energy eV to break up Cooper pairs. In this case a Cooper pair is broken
up in one of the electrodes creating a quasi-particle that passes to the other electrode.
This results in the fact that the current voltage characteristic is approaching the
temperature independent behavior of the normal conducting state:

IN = GNV with GN =
1

RN
(17)

3. For temperatures T � Tc and voltages |V | < Vg, neither the thermal energy kbT ,
nor the electric energy eV is sufficent to externally break up Cooper pairs. Therefore
the normal current is vanishing small:

IN = GNV = 0 with GN = 0. (18)

4. At a finite temperature of T > 0, there is a finite number of quasi-particle in the
superconducting electrode due to thermally broken Cooper pairs, which can already
tunnel through the barrier at voltages smaller than the gap voltage. This results
in a finite resistance, the so called subgap resistance Rsg. This subgap resistance
is determined by the number of thermally broken Cooper pairs and the normal
current is given by

IN = GNV with GN = Gsg. (19)
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Summarized, the normal current of a Josephson junction is described by a voltage and
temperature dependent conductance GN (V, T ):

1

Rsg (T )
for |V | < Vg (20)

1

RN
for |V | ≥ Vg. (21)

In figure 8 the current-voltage characteristic, following from these two values of the
normal conductance of a Josephson junction, is displayed:

Figure 8: Current-voltage characteristic of a Josephson junction. This drawing of a
current-voltage characteristic assumes very low temperatures leading to a
vanishing subgap resistance.

Displacement Current ID From outside, a Josephson junction looks like a plate capac-
itor and therefore has a finite capacitance C. Hence, the displacement current has to be
taken into account for situations where the voltage V across the junction is changing
with time (dV/dt 6= 0). In this situation it is given by

ID = C
dV

dt
. (22)

Fluctuation Current IF The Brownian motion of quasiparticles within the Josephson
junction causes a current noise that can be expressed according to Nyquists’s theorem as

SJ (f) =
4kBT

RN
(23)

This fluctuation current is temperature dependent and influences the behavior of the
Josephson junction.
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Equivalent circuit of a Josephson junction and junction equation According to the
discussion of the current contributions within a Josephson junction it is possible to draw
the equivalent circuit displayed in figure 9.

Figure 9: Equivalent circuit of a Josephson junction. As described above the total current
I is composed out of four different components [6].

Using the given relations for the current contributions it is possible to set up the so
called basic junction equation:

I = IC sin (φ) +GN (V )V + C
dV

dt
+ IF. (24)

2.1.5 Josephson junction in magnetic fields

Until this point a Josephson junction was assumed to be a point-like object, but as they
are real life objects they are not point-like at all. The area of a Josephson junction is
defined by the contact area of the superconductor-insulator-superconductor area. Thus,
it has to be taken into consideration that the phase difference Θ is changing with the
position within the tunnel barrier.

To analyze the dependency of the critical current IC of the external magnetic field B,
one can observe the phase change along a closed integration path. This is schematically
displayed in the inset of figure 10.

As the macroscopic wave function has to be well-defined, a change of phase along the
integration path is displayed by the inset of figure 10 can only be integer multiples of 2π.
It could be calculated, that the phase difference between the points z1 and z2 is given by

φ (z1)− φ (z1) =
2πΦ

Φ0
. (25)

By making the distance dz = z2 − z1 infinitesimal small, integrating equation (25) and
inserting the result in the first Josephson equation (5) results in a position dependent
super current density:
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Figure 10: Normalized critical current of a Josephson junction, depending on the magnetic
flux inside the SQUID loop [6]. Inset: Josephson junction, penetrated by a
magnetic field. The red line indicates a closed integration path.
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jS(z) = jC sin

(
2π

Φ0
Bzd∗ + φ0

)
(26)

Here, B denotes the magnetic field density and d∗ denotes the effective thickness of
the barrier. Integrating this super current density across the whole junction area, shows
that the critical current of the Josephson junction depends on the magnetic flux within
the junction:

Imax
S (Φ) = IC

∣∣∣∣sin (πΦ/Φ0)

(πΦ/Φ0)

∣∣∣∣ . (27)

This relation between the maximum super current and the magnetic flux inside the
junction is shown in figure 10, were the normalized critical current is plotted as a function
of the magnetic flux inside the Josephson junction. This feature of a field dependent
critical current of a Josephson junction is exploited by the design of Superconducting
Quantum Inference Devices. These devices are discussed in the following.

2.1.6 dc-SQUIDs

Within figure 11 a schematic drawing of a so called direct-current Superconducting
Quantum Interference Device (dc-SQUID) is displayed. The simplest picture of a dc-
SQUID is a superconducting loop that is separated by two Josephson junctions symbolized
by crosses. In parallel to these two Josephson junctions, there are two shunt resistors,
necessary to prevent the SQUID from hysteretic behavior.

Figure 11: Schematic drawing of a dc-SQUID [6]. The superconducting loop is interrupted
by two Josephson junctions indicated by crosses. In parallel to these Josephson
junctions shunt resistors prevent hysteretic behavior of the SQUID.

It is assumed, that both Josephson junctions within figure 11 are identical, thus the
current phase relations Is1 = IC sin (φ1) and Is2 = IC sin (φ2) hold. From Kirchhoff’s
second law follows:
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IS = IC sin (φ1) + IC sin (φ2)

= 2IC cos

(
φ1 − φ2

2

)
sin

(
φ1 + φ2

2

)
. (28)

By integrating equation (28) along the SQUID loop it can be shown, that the phase
difference φ1 − φ2 is proportional to the magnetic flux Φ inside the SQUID loop and
given by φ1− φ2 = 2πΦ/Φ0. Inserting this into equation (28) results in the super current

IC = 2IC cos

(
π

Φ

Φ0

)
sin

(
φ1 + π

Φ

Φ0

)
(29)

Equation (29) together with the fact that the total flux within the SQUID loop is given
by Φ = Φext +LIcirc results in an equation for the total flux within the SQUID loop to be

Φ = Φext − LIc sin

(
φ1 − φ2

2

)
cos

(
φ1 + π

Φ

Φ0

)
(30)

Here, L stands for the inductance of the SQUID loop and Icirc = (Is1 − Is2) /2 is the
shielding current inside the SQUID loop.

According to equation (28), sin (φ1) ≈ − sin (φ2) holds for small currents IS � IC.
Inserting this into equation (30) results in

Φext = Φ + LIC sin

(
φ1 − φ2

2

)
= Φ +

Φ0βl

2
sin

(
φ1 − φ2

2

)
, (31)

which is a relation between the externally applied flux and the total flux inside the
SQUID loop. In this equation βl is defined as

βl =
2LIc

Φ0
, (32)

which is called shielding factor. It gives the relation between the maximum shielding
current Imax

circ = IC and Φ0/2. Within figure 12 the total magnetic flux within the SQUID
loop is plotted against the externally applied magnetic flux. It is obvious that for βl > 2/π
the curve becomes ambiguous. In the case that the external flux is equal to nΦ0 the
circular current becomes zero and the total magnetic field is equal to the externally
applied one, which is displayed as the nodes in figure 12.

The fact that for externally applied fluxes equal to nΦ0 no additional flux is induced by
shielding currents within the SQUID loop, results in an unchanged critical current of the
Josephson junctions of the SQUID. Therefore, the current I, which is smaller than 2IC of
the single junction and applied for the operation of the SQUID is completely carried by
Cooper Pairs through the Josephson junctions. This results in a vanishing voltage drop
across the SQUID for Φext = nΦ0.
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Figure 12: The total magnetic flux Φ/Φ0 in dependency of the externally applied magnetic
flux Φ0/Φ0 for different values of βl [6].

2.2 Noise Thermometers

Noise thermometers are the only type of thermometers which can cover the full temper-
ature range of solids from thousands of kelvin to micro-kelvin. The variants of those
noise thermometers used in low and even ultra-low temperature applications cover a wide
range of temperature, with a single device. This range starts, depending on details of the
device, at temperatures of a few kelvin and reaches down to several micro-kelvin, hence
they cover several orders of magnitude within the temperature scale.

But the most important fact about them is that the measured quantity is based
on a fundamental physical relation, which allows noise thermometers to be used as
primary thermometers. In general, as the name already suggests, noise thermometers
use the noise of a physical quantity to determine the temperature. More specific, the
thermometers discussed during this lab course use the thermal noise of electrons within
an electrical conductor. This thermal noise is a result of the Brownian motion of the
electrons within the conductor and its amplitude can be described by the so-called
Nyquist formula [11]. In contrast to the measurement of the thermal voltage noise across
a resistor at high temperature, the same at low and ultra low temperatures comes along
with some experimental challenges. These challenges arise from the fact that the voltage
fluctuations across a resistor become smaller and smaller with decreasing temperature.
This decreasing signal requires an amplifier with a very low intrinsic noise. As already
discussed in the previous section so called superconducting quantum interference devices
(SQUIDs) fulfill those requirements. During this lab course noise thermometers are
explained and used as one possible application of the described SQUIDs.
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2.2.1 Thermal Noise

In the year of 1827, Robert Brown published his observations on pollen suspended in
water [2]. He observed that these particles randomly move around the liquid. In the
following years, this random motion of particles was called Brownian motion. Later the
observations of Brown were explained in a theoretical way by Albert Einstein [4], being a
thermal motion of these particles. Similar to particles suspended in liquids, also electrons
within a conductor show the behavior of thermal motion. The later phenomenon was
initially discovered by John B. Johnson [9]. In the following, the thermal motion of
electrons within a conductor is called thermal noise or simply noise. In [10] Johnson
showed, that in a given bandwidth ∆f , the variance 〈U2〉 of the voltage across an
electrical resistor is proportional to the temperature T and the value R of the resistor.
Shortly after this discovery Harry Nyquist identified the thermal motion of charge carriers
inside a metal as the reason for this behavior [11]. For the relation between temperature,
resistance, and voltage variance he derived

〈U2〉 = 4kBTR∆f, (33)

which is often called Nyquist formula.
To sketch how this relation can be derived, we follow a thought experiment made by

Nyquist [11]. We begin with two electrical resistors R1 = R2 = R connected to each other
as drawn in figure 13. The thermal motion of the charge carriers in resistor R1 leads
to a voltage drop δU1 across it. This voltage drop drives a current I2 = δU1/(R2 +R1)
through the resistor R2. Similarly, a voltage fluctuation δU2 across the second resistor
drives a current I1 = δU2/(R1 +R2) through resistor R1.

Figure 13: Electrical circuit of Nyquist’s thought experiment [12]. The two resistors
R1 and R2 are in thermal equilibrium at temperature T and are connected
via a transition line of length `. For the values of the resistors we assume
R1 = R2 = R.

As mentioned above the resistors R1 and R2 are equal, therefore the voltages δU1 and
δU2 are equal and can be replaced by δU . Due to the equality of the voltages across both
resistors, also the current flowing through both resistors is equal to I = δU/2R. This
current leads to power dissipation of
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P = 〈I2〉R =
〈δU2〉

4R
(34)

in each resistor. Using the second law of thermodynamics, Nyquist concluded that the
power transferred from R1 to R2 is equal to the power transferred in the reverse direction,
from R2 and R1. It is worth to notice, that all assumptions made so far do not limit
the choice of material for the resistors. It is possible to imagine metallic, electrolytic, or
any other conducting material in this thought experiment. Equation 34 must hold for
every frequency band ∆f , but in the general case the resistance of the resistor might
depend on frequency, R = R (f), making equation 34 frequency dependent. This leads to
the conclusion that the function describing the voltage drop across the resistors due to
the thermal motion of the charge carriers is a function of resistance, temperature and
frequency.

The function describing the voltage drop can be determined by looking at the energy
that is traversing the lines between the resistors. Let us imagine an amount of energy
δE, emitted from R1, traversing from R1 to R2 and absorbed by the resistor R2. The
same amount of energy must also traverse in the opposite direction being emitted by R2

and absorbed by R1. This flow of energy can be imagined as a superposition of waves,
moving with a speed of v = ∂ω/∂k = ω/k through the transmission line. This waves can
be described by

U (x, t) = U0e
i(kx−ωt). (35)

Within this equation, ω represents the angular frequency, k the wave number, and U0 a
voltage amplitude. At any time after the thermal equilibrium is reached, the transmission
line is detached from both resistors simultaneously. After this separation the propagating
waves will get reflected at both ends of the transmission line, hence the energy emitted
by the resistors is now trapped inside the transmission line. We now connect the ends
of the transmission line and describe the propagating waves by the complete basis of
functions, that is given by sinusoidal waves U sin (ωt− kα) that fulfill periodic boundary
conditions, k` = 2πn, and propagate left or right. In the further course it is sufficient to
consider one of the resistors and one direction of propagation of the voltage wave. For
the number N of allowed modes within a certain frequency band between ω and ω + ∆ω
we find

N = `
∆k

2π
=
`

v

∆ω

2π
. (36)

Each of those modes was in thermal equilibrium with the resistor before we detached
the lines. Therefore, its occupation is given by the Bose-Einstein distribution and we
find for the energy carried by this mode

E (ω) =
~ω

e ~ω/kBT − 1
. (37)
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Within this formula ~ represents the reduced Planck constant, kB the Boltzmann
constant and T the temperature of the system. In the case of ~ω � kBT equation 37
simplifies to

E = kBT. (38)

This equation is describing the classical limit. The thermal power each of the two
resistors is emitting into each mode can be calculated by dividing the energy E by the
time t it took to emit the corresponding wave into the transmission line. In the case of
this experiment this time t = l/v is defined by the length ` of the conduction lines and
the speed v of the waves traversing through the lines. As the power transmitted by one
mode is P = E/t we find for the power transmitted by the N = ∆fl/v modes within a
frequency band ∆f

P (f)

∆f
=

N

∆f

E

t
= kBT (39)

By inserting equation 34 into equation 39, and solving for the variance of the voltage,
we find the known Nyquist formula:

〈U2〉 = 4kBTR∆f. (40)

As already mentioned, there was no assumption on the nature of the resistors made.
Therefore, the Nyquist formula holds not only for ohmic resistances but also for every kind
of dissipative component. Taking this into account the resistance R within equation 40
can be replaced by a complex and frequency dependent impedance Z (f). However, as
the application of noise thermometry deals with an ohmic resistance, the Nyquist formula
will be used as it is written within equation 40 in the following.

2.2.2 Principle of noise thermometry

As already mentioned the noise thermometers make use of the fundamental physical
property of thermal noise to measure the temperature. The kind of noise thermometer
used within this lab course is a very simple one, whose setup is described in chapter 4.
For this part of the introduction it is sufficient to know that the thermal noise exhibited
by a resistor is measured using a two stage SQUID setup as described in section 3.3 and
that the resistor is connected in serial to the input coil Lin of the single SQUID front-end.

This serial connection of the resistor and Lin is symbolized by the circuit shown in
figure 14. The thermal noise 〈U2〉 exhibited by the resistor R is symbolized by the voltage
source U as the resistor and the inductance within the circuit in figure 14 are assumed to
be ideal. It is obvious that the circuit shown in figure 14 shows a low pass like behavior,
as the serial connection of a resistor and an inductance is the simplest form of a low pass.
This leads to a frequency dependency of the current measured with the ampere meter.
Thus, it is necessary to consider every single frequency bin of the measured signal. The
easiest way to do so is calculating the Fourier-transform of the measured signal, resulting
in the so called power spectral density. The way to calculate the same for the circuit
displayed in figure 14 is shown in the following.
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LR
AU

Figure 14: Equivalent circuit of the input circuit used for the discussed noise thermometers.
The schematic drawing consists of a resistance R, an inductance L, a voltage
source U , and an ampere meter. The combination of R and L leads to a low
pass like behavior of the circuit.

Power spectral density of the RL circuit Every dissipative component of an electric
circuit is in general frequency dependent, therefore the power spectral density is also
frequency dependent. This is because the power spectral density describes the power
contained within a certain frequency band ∆f . The power spectral density SA (f) of a
quantity A satisfies the equation

f0+∆f∫
f0

SA (f) df = 〈A2〉. (41)

The 〈A2〉 within equation 41 describes the variance of the measured parameter within
a frequency band [f0, f0 + ∆f ]. Due to this equation the unit of the power spectral
density depends only on the unit of the measured quantity A. For the voltage fluctuations
described by the Nyquist formula, equation 40, above we find the power spectral density

SU =
〈δU2〉
∆f

= 4kBTR. (42)

In this case, the unit of the power spectral density is V2 Hz−1. In literature and
publications sometimes the terms noise power, noise spectrum, or noise are used as
synonym for the power spectral density (PSD). Often also, the square root of the PSD
is considered, which has the unit V/

√
Hz. According to Kirchhoff’s law, the circuit

representing the noise thermometers discussed within this lab course and shown in
figure 14 is described by

U −RI − iωLI = 0, (43)

21



where ω represents the angular frequency of the alternating voltage U generated by the
voltage source. Rearranging equation 43 and introducing the cutoff frequency fc = R/2πL
we find for the ratio of voltage and current amplitudes

|U |
|I|

= R

√
1 +

f2

fc
2 . (44)

Analogous to the power spectral density of a voltage, as it is given by equation 42, the
power spectral density for the current is given by

SI =
|I2|
∆f

= SU
|I|2

|U |2
. (45)

By inserting equation 42 and equation 44 the current power spectral density for the
circuit displayed in figure 14 is given by

SI (f) =
4kBT

R

1

1 + f2

fc
2

(46)

which is given in units of A2 Hz−1

The first factor within equation 46 results in a constant value, which is determined
by the resistance R and the temperature T of the system. Whereas the second factor is
describing the frequency dependence, i.e. the low pass like behavior of the circuit. The
spectral shape is only determined by the cutoff frequency fc = R/2πL. This frequency
denotes the frequency at which the amplitude of the signal has dropped to 1/

√
2 times

its original value and can be changed by changing the resistance R or the inductance
L of the circuit. Using equation 46 it is possible to calculate the shape of the power
spectral densities for the circuit displayed in figure 14. Figure 15 shows the current noise
for fixed R and L at different temperatures on the left side as well as for fixed L and T ,
but different resistances on the right side.

Having a look at the left plot in figure 15, where the resistance and inductance are
kept constant at R = 5 µΩ and L = 5 nH the amplitude of the spectra increases with
increasing temperature. With these values for the resistance and the inductance the
cutoff frequency takes the value fg ≈ 160 Hz. In contrast, for the right plot of figure 15
the temperature and the inductance are kept constant at T = 10 mK and L = 5 nH and
the resistance is varied. The resistance values shown in this plot are typical values used
for state of the art noise thermometers. From the plot it is visible that with increasing
resistance, the cutoff is shifted towards higher frequencies and the value of the plateau is
reduced [5, 7, 1, 12].
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Figure 15: Current noise of a circuit composed out of a resistor R and an inductance
L at a temperature T [12]. The spectra are calculated using equation 46.
Left: The the resistance and the inductance are kept constant at R = 5 µΩ
and L = 5 nH, only the temperature is varied. Right: The temperature and
inductance are kept constant at T = 10 mK and L = 5 nH and the resistance
is varied.
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3 Methods

In this chapter the basic concepts of SQUIDs as sensitive magnetometers are discussed.
This includes the linearization via flux-locked-loop and low-noise two-stage SQUID setups.
How the thermal noise of a resistor can be used to calculated its temperature is explained
at the end.

3.1 dc-SQUID Characteristics

A technical drawing of a dc-SQUID circuit as it will be used within circuits later can be
seen in figure 16. Here, the Josephson junctions drawn are shunted, not ideal junctions
and can be described by the RCSJ model.

M

IΦ

U

IB

Φ

Figure 16: Simple circuit containing a dc-SQUID operated at the constant bias current
IB [13]. The voltage drop U across the SQUID depends on the magnetic
flux Φ inside the SQUID and the bias current IB. A flux change ∆Φ can be
generated by the current IΦ in a superconductive coil, coupled to the SQUID
via the mutual inductance M .

Such a SQUID is usually operated with a constant bias current IB. For small bias
currents, the Cooper pairs of the superconductors can tunnel through the Josephson
junctions without dissipation and thus no voltage drop occurs. At higher bias currents
above a critical current IC, Cooper pairs break up and tunnel as quasi-particles through
the junctions and create a voltage drop U over the SQUID. The critical current IC

depends periodically on the magnetic flux Φ inside the SQUID where the period is given
by the magnetic flux quantum Φ0. Thus, the voltage drop over the SQUID U is U(IB,Φ)
a function of the bias current IB and the magnetic flux Φ. A change of magnetic flux
∆Φ can be generated by a superconducting coil coupled to the SQUID. The flux change
inside the SQUID is given by

∆Φ = IΦM, (47)

where IΦ is the current through the coil and M is its mutual inductance.
The current-voltage characteristic, which is the voltage drop U over the SQUID as a

function of the bias current IB, is shown in figure 17 on the left-hand side for integer
as well as half-integer flux quanta inside the SQUID loop. For any other flux value

24



the output lies in between the two curves. At a given bias current the voltage has a
maximum at half-integer magnetic flux quanta and a minimum at integer flux quanta.
The bias current IB is marked where the voltage swing is maximal. The corresponding
voltage as a function of the magnetic flux in the SQUID is shown in figure 17 on the
right-hand side. The flux-voltage characteristic can be used to calculate the mutual
inductance M of the superconducting coil to the SQUID using the equation 47. Here,
this was already done to convert the current through the superconducting coil to a flux in
units of magnetic flux quanta. For our SQUIDs, we usually determine the inverse mutual
inductance M−1 and provide it in units of µA Φ0

−1. The current-voltage and flux-voltage
characteristics shown in figure 17 were obtained during a characterization of a SQUID
produced in our cleanroom. The maximal voltage swing was found using IB = 14.6 µA
and M−1 = 42(1) µA Φ0

−1 was measured. The characterization was performed at 4.2 K
in a helium can.
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Figure 17: Current-voltage and flux-voltage characteristics [13]. The voltage drop over
the SQUID is shown on the left hand side for half-integer and integer flux
quanta. On the right hand side the voltage is shown as a function of the flux
inside the squid.

A SQUID can be operated as a sensitive magnetometer as its output voltage depends
strongly on the magnetic flux. For the SQUID mentioned above, the bias current with the
highest voltage swing and a magnetic flux of 1/4 Φ0 was used to measure a amplification
of 109 µV Φ0

−1 which is the slope of the flux-voltage characteristic shown in figure 17
on the right-hand side. This specific magnetic flux and bias current were used since
the slope of the voltage-flux characteristic is maximal in this case. However, a SQUID
alone is not suited as a flux to voltage converter because it is not well defined due to the
periodicity of its voltage-flux characteristic.
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3.2 Flux-Locked-Loop

The signal of a SQUID can be linearized by a flux-locked loop (FLL) setup. A schematic
drawing of an FLL circuit is shown in figure 18. To achieve a well defined magnetometer,
the output voltage UOUT is used to produce a negative flux feedback in the SQUID via
the resistance RF and a feedback coil. The closed loop will counteract a flux change in
the SQUID such that the voltage drop over the SQUID is zero and hence the integrator
does no longer change the output voltage. A flux change from the input coil will be
compensated by a corresponding negative flux change from the feedback coil.

The counteracting flux changes are given by

∆Φ = ∆IINMIN = −∆IMΦB = 0 (48)

where I is the current through the feedback coil. Using the output voltage, one finds

∆I =
∆UOUT

RF
(49)

which can be further used. Combine and rearranging leads to

∆UOUT = −RF
MIN

MΦB
∆IIN (50)

for the output voltage which is thus proportional to the input current. The amplification
factor is given by RFMIN/MΦB and hence is an effective resistance.

The feedback will lead to a fixed working point of the SQUID that is set by IB, IΦB

and UB. At the given biases, the working point is then defined by the flux at which the
voltage drop over the SQUID is zero. To reach a good signal to noise ratio, a working
point with a strong flux dependence is favored.

MIN

IIN

IB

Φ
IΦB

RFUB

UOUT

∫
MΦB

Figure 18: Flux-locked-loop circuit with a single SQUID [13]. A negative feedback is
used to linearize the periodic signal of the SQUID.

The described circuit can be used to acquire the change of flux produced by a current
IIN through the input coil, but it has some limitations. It is important to note that
positive feedback could occur due to a lag of the feedback and thus a phase difference
between signal and feedback might occur. The feedback could then be positive. This has
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to be excluded by a well tuned integrator which is realized by a low-pass filter. In the
case of positive feedback, a lower cut of frequency of the integrator is necessary though
this leads to a reduced bandwidth. Also, the feedback circuit can potentially be too slow
to regulate the flux compensation of a fast and large flux change. This can result in a
changed working point due to a jump of the working point of multiple integer flux quanta
in the flux-voltage characteristic and thus a cropped output signal.

3.3 Two-Stage SQUID-Readout

To decrease the noise and hence increase the signal to noise ratio of the flux-locked loop
circuit with a single SQUID, two SQUID stages can be used. A drawing of a two-stage
FLL SQUID circuit can be seen in figure 19. A current change IIN in the input coil creates
a flux change ∆Φ1 = IINMIN in the first stage SQUID, also referred to as front-end
SQUID. This configuration allows to operate the first stage SQUID in a voltage bias to
reduce the power dissipation of the SQUID. The flux change of the first stage SQUID
generates a current change which creates a flux change ∆Φ2 in the second stage SQUID
via an input coil. The second stage SQUID consist of multiple in series connected SQUIDs
to increase its voltage swing and is thus called SQUID array. The voltage signal of the
second stage SQUID biased at a constant current is then amplified and integrated with
electronics at room temperature resulting in the output voltage UOUT. Hence, I, IB,
IΦX, IΦB and UB are used to set the working points of the SQUIDs.

MΦB

MIN

MAMP

MΦX

RG

IB IΦXI

IΦB

RF
UB

UOUT

IIN

∫

Φ1

Φ2

Figure 19: Two-stage flux-locked-loop readout [13]. The input signal IIN is amplified by
two stages before it is integrated and used as a negative feedback.

The output voltage is thus also given by equation 50 and the only major difference
is a step-wise amplification of the signal before the integrator that leads to a reduced
noise. Furthermore both SQUID stages should match each other. Assuming the flux
dependent current of the first stage is generating a flux change of more than one Φ0
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in the second stage multiple working points with potential different noise exist. If so,
this can be prevented by the so called under-tuning of the first stage SQUID where the
voltage swing is reduced by a smaller bias current I, though this results in a decreased
signal to noise ratio.

3.4 Temperature measurement using a noise thermometer

In section 2.2.2 the noise power spectral density of a simple circuit combined of a resistor
R and inductance L and a current measurement device, is calculated. As such a circuit
is used within state of the art noise thermometers the noise power spectral density of
this circuit is used to calculate the temperature. To do so there are two possibilities:

• Adapting the expected shape of the noise power spectral densities (equation 46) to
the measured power spectral densities.

• Using the linearity in temperature of the noise power spectral densities to make a
comparison with a calibration noise power spectral density.

Both methods are used for up-to date noise thermometers and both have their advantages.
The first method, were the spectral shape given by equation 46 is adapted to the noise
power spectral densities measured with the temperature sensor results in three values:
The temperature T , the resistance R of the noise source and the inductance L of the
input circuit. The resistance has of course only one component as the noise source is the
only part of the input circuit that is normal conducting, whereas all other components
such as the input coil and the wiring are superconducting. However the inductance L has
two contributing values, namely the inductance Lin of the input coil and the inductance
Lloop of the input circuit.

In contrast to that the second method makes use of the linear connection between the
temperature and the power spectral density measured with the temperature sensor. By
dividing the noise power spectral density S (f) by an calibration noise power spectral
density Scal (f). And multiplying this quotient with the temperature, the calibration noise
power spectral density was recorded at, results in a temperature value that corresponds
to S (f). So the temperature is given by

T =
S (f)

Scal (f)
Tcal. (51)

But as, due to a lack of different temperatures, no calibration noise power spectral density
is recorded during this lab course, therefore the first method is used to determine the
temperature of the liquid helium, the experiment is emerged in.

3.4.1 Uncertainty of the calculated temperatures

In both cases it is of course possible to determine a uncertainty of the calculated
temperature. For the first method of temperature calculation, were the expected spectral
shape is adopted to the measured power spectral density, the uncertainty of course results
from the uncertainty of fitting routine.
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In contrast to that the the uncertainty of the second way to determine the temperature
is only given by the statistical uncertainty of the measured power spectral densities. If it
is assumed that the averaging time for the calibration spectrum is very long compered
to the single spectra used for temperature calculation, the statistical uncertainty of the
calculated temperature is given by

∆T

T
=

(
1

t∆f

) 1
2

. (52)

As this method is not used for the temperature calculation the derivation of this formula
is not explained here but in the following section were a state of the art noise thermometer
is explained.
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4 Setup

Within this section the setup used for this lab course will be explained. At first, the
setup of the experiment is explained. Afterwards, you will get an introduction to
the functionalities of the software SQUID Viewer which allows to control the SQUID
electronics and at the end the software of the oscilloscope PicoScope 6 is described.

4.1 Experimental Setup

Figure 20b shows the setup as it is mounted within a dipstick as shown in figure 20a. The
ribbon cable on the right side connects the experiment to the top of the dipstick where
the SQUID electronic is connected to the experiment. The used electronic is capable of
reading out up to three independent SQUID setups. But in the case of this lab course
only the first two are used. The first channel is connected to a single stage SQUID as
drawn in figure 18, whereas the second channel will be used as a noise thermometer and
is connected to a two stage setup with a frontend SQUID and a SQUID array as a second
stage as drawn in figure 19 while for the noise source an aluminum wire is connected to
the input coil of the frontend.

(a) Dipstick (b) Setup mounted inside the Dipstick

Figure 20: Dipstick with shieldings (a) as well as the experiment mounted inside (b).
The dipstick will be put into a 4He transport vessel, with the experiment
completely submerged in liquid 4He.

For the single stage setup, the feedback and the input coil of the SQUID are connected
to the Φb and Φx channel respectively. Thus it is possible to couple a flux signal to the
SQUID loop via both, the input and feedback coil using the respective generator settings
within the SQUID viewer. The biasing current for the SQUID itself is applied by using
IB. In the case of the two stage setup, the Φx channel is connected to the feedback loop
of the SQUID array and the Φb channel is used to compensate the flux within the SQUID
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loop of the frontend SQUID. The bias current for the frontend SQUID is in this case set
by I and the bias current of the array is feed in by Φb.

Figure 21: Setup with the dipstick submerged in a liquid 4He vessel.

The experiment is shielded by a niobium as well as a Cryoperm shield. Both shielding
are used to shield external magnetic and electric noise from the experiment. After the
shieldings have been placed over the experiment and fixed with screws, the dipstick is
submerged into a 4He transport vessel. The complete setup is shown in figure 21

4.2 SQUID Viewer

We use the software SQUID Viewer to control the SQUID electronics at room temperature.
The most important palettes of the program are shown in figure 22. A palette can be
opened by clicking on the respective name with the same color in the main window.

The main window (figure 22a) can be used to open the palettes, set the active channel
and directly access often used functions. The green marked channel (here 22) is the
active channel, which means that the information on other palettes refer to this channel.
The active channel can be changed by clicking on a different one. Often used functions
are e.g. to switch from the amplification mode to the FLL mode or turning generator
signals on and off.

The mode palette (figure 22b) is used to switch from the amplification mode to the
FLL mode as well as change the feedback resistance in the FLL mode and change the
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(a) Main window

(b) Mode palette (c) Bias palette

(d) Source palette (e) Generator palette

Figure 22: Main Window and the most important palettes of the program SQUID Viewer.
The hardware, heater and overload palettes will not be used in this lab course.
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gain bandwidth product, which controls the cut of frequency of the low-pass used for
integrating.

The bias palette (figure 22c) and source palette (figure 22d) can be used to set the
operating points of the circuit. The labeling is the same as the one introduced in the
figures 18 and 19. For tuning the parameters one can either use the rough, fine or ultra
fine slider or the input box.

The generator palette (figure 22e) is used to apply alternating signals on the different
biases. For this lab course only triangle waveform with different peak-to-peak values are
necessary. The offset 1/2 peak-to-peak has to be activated if one wants to apply a signal
that is only positive. Else, a signal going from the negative half peak-to-peak value to
the positive half peak-to-peak is generated.

A more in depth description can be found in the manual of the SQUID electronics.

4.3 PicoScope

In the following part, there is an explanation of the basic and necessary functionalities of
the oscilloscope software PicoScope6. The manual of the of the software could is found
on the manufacturers web page 1.

In figure 23 the PicoScope6 software is shown in the oscilloscope mode, with two
channels active. The most important buttons are explained with the figure itself. In
general the oscilloscope mode is activated by clicking on the scope button, which is
marked with a red square.

The line of channel controls, marked with a blue rectangle in figure 23 allows you to
change the setting of each input channel independently. The two sliders on the right
side of the mode buttons are used to control the timebase of the oscilloscope. Theses
sliders are marked with a blue rectangle. The purple marked slider right beside the
timebase controls allows to sweep through the most recent waveforms in the buffer of
the oscilloscope. Close to this the zoom buttons are marked with a black rectangle. On
the bottom left corner of the displayed graph, two rulers of the time axis are placed.
They are indicated by a white square. For each y-axes, two rulers in the corresponding
color are placed in either the top right or left corner of the displayed graph. Finally
there are the start/stop buttons at the very bottom part of the oscilloscope window, on
whose very right side the trigger settings can be found. The latter ones are marked with
an orange rectangle. In case you want the software to measure certain parameters like
for example frequency or peek-to-peek voltage of the input signals, this could be done
withe the measurement functions, that are added by clicking on the plus sign close to
Measurements in the bottom line of the window. This area is marked with a turquoise
rectangle.

Figure 24 shows the PicoScope6 software in the spectrum mode. This mode is activated
by clicking on the third button of the mode buttons, which is marked with red square in
figure 24.

1https://www.picotech.com/download/manuals/picoscope-6-users-guide.pdf
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Figure 23: PicoScope6 software in oscilloscope mode.

By clicking on the button marked with a green square a window, were you can change
the settings of the FFT and the two axes. The frequency bandwidth of the measurement
displayed in the graph is shown in a slider right to the settings button. This slider is
marked with a blue rectangle and right beside, the slider marked with purple rectangle
allows you to sweat through a certain amount of buffered signals. As well as in the
oscilloscope mode, there are rulers available in the spectrum mode. This rulers are are
again placed in lower left corner for the bottom axis (white box) and in the upper right or
left corner for the y-axes (colored boxes). At the very bottom left corner of the window
there are again the start and stop button for the measurement.
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Figure 24: PicoScope6 in spectrum mode, to display the averaged spectral power density.
The settings of the FFT, and the displayed graph can be changed in the shown
window.
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5 Experiments

This chapter describes the different experiments and provides hints for the completion.
At first, make yourself familiar with the setup mounted inside the dipstick and the room
temperature electronics. Also, spend some time to learn how the software works once
the dipstick is cold. Ask your supervisor if you need help.

You will work with liquid helium and expensive state of the art electronics. Cryogenic
liquids are dangerous when not handled correctly while the sensitive electronics can break
easily when not used with caution. Both, liquid helium and the electronics thus may
only be used under supervision. You may play around with the software and conduct
experiments on your own once the dipstick is cold and the electronics are connected.

5.1 Preparations

• Measure the resistances of ±V,±φ,±φX,±I for both connected channels at room
temperature and in liquid helium. Explain the differences and the order of magnitude
of the measured resistances.

– Measure the resistances with the provided multimeter and assume an uncer-
tainty of 1 % plus two digits.

– You may use the auto range of the multimeter at room temperature, but
switch to the lowest range if you measure a resistance in liquid helium.

– What did you measure? How could this measurement be improved?

5.2 Single Stage SQUID

A single SQUID is connected to the first channel. The corresponding circuit for the FLL
is figure 18. In AMP mode, the feedback resistance is disconnected and the integrator is
replaced by an amplifier.

5.2.1 Open Loop

• Apply a generator signal on IB to get the current-voltage characteristic. Measure
the resistance of the normal conducting SQUID. What is the resistance of a normal
conducting single Josephson junction? Save the current-voltage characteristic for
integer and half-integer Φ0 and plot it with Python.

– In AMP mode, UOUT is amplified by 2000.

– Use a generator with 1/2 peak-peak offset and set IB, VB, ΦB, I and ΦX on
the bias and source palettes to zero.

– The normal conducting resistance should be flux independent. You may set
the generator up to the maximal possible value.

– You may estimate the flux in the SQUID by the shape of the characteristic.

– The difference of the generator signal in V gives you the difference of the
applied signal in % of the set generator value.
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– Connect the generator and output signal in an x-y plot without time.

• Apply a generator signal on ΦB or ΦX to get the flux-voltage characteristic. Estimate
the peak-to-peak voltage at the bias current with the largest voltage swing in µV.
Measure the inverse mutual inductance M−1

IN as well as M−1
ΦB. Save the flux-voltage

characteristic for both coils and plot it with Python.

– Tune IB so that the characteristic has the largest voltage swing.

– The unit of M−1
IN and M−1

ΦB is µA Φ0
−1.

5.2.2 Flux Locked Loop

• Tune the SQUID and activate the FLL mode. Apply a generator signal on ΦX.
Save the output and plot it with Python. Measure the amplification of the circuit
in units of V µA−1. Calculate the value one would expect from the measurements
before.

– Tune a single SQUID: Apply a generator on ΦB. Set IB to the value with the
largest voltage swing and center UOUT with VB. Turn the generator off and
activate the flux-locked-loop mode. Move UOUT with ΦB to zero.

– Is the signal linearised? What influences the amplification? What is the effect
of the working point?

– The working point is set by IB, VB, ΦB.

– The expected amplification can be calculated with equation 50.

5.2.3 SQUID Noise

• Measure the noise spectrum in FLL mode. Change the gain-bandwidth-product
(GBP) and look at the effect on the spectrum.

– Use the spectrum mode. Set the y and x-scale to logarithmic, the display
mode to average and the logarithmic unit to dBV.

– You expect a f−1 frequency dependent noise component at low frequencies as
well as a frequency independent component at higher frequencies.

– What is the optimal GBP without resonances?

5.3 Two-stage SQUID Readout

A two-stage SQUID setup is connected to the second channel. The input coil of the
first stage SQUID is short circuited with an aluminum wire which functions as a noise
thermometer. The corresponding FLL circuit is figure 19.

• Tune the two-stage SQUID setup. Set the gain-bandwidth-product to the highest
possible value without resonances. Measure and save a noise spectrum with the
lowest frequency range that includes a clear cut-off from the SQUID readout.
Determine the temperature of the noise thermometer with a fit.
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– Tune a two-stage SQUID setup: Tune the second-stage SQUID similar to a
single stage SQUID (ΦX generator with IB and VB). Apply a generator on ΦB.
Set I to the value with the largest swing of the first stage SQUID and center
UOUT with ΦX. Turn the generator off and activate the flux-locked-loop mode.
Move UOUT with ΦB to zero.

– You expect two cut-offs: one from the noise thermometer and one from the
SQUID readout, affected by the gain-bandwidth-product.

– You can convert U in dBV to the noise amplitude spectral density
√
SV in

V/
√

Hz with
√
SV = 10U/20/

√
∆f where ∆f is the frequency step between

the data points.

– Use the earlier determined amplification to convert
√
SV to the noise amplitude

spectral density of the current in the input coil
√
SI in A/

√
Hz.

– Fit the square-root of the noise power spectral density S in A2 Hz−1 to the
noise amplitude spectral density

√
SI to determine the temperature.

– Assume an input coil inductance of 1.4 nH.

– Is the noise spectrum significantly affected by the alias effect?
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De Gruyter Studium. De Gruyter, Berlin ; Boston, 2. auflage edition, 2018. 1.
Auflage verfasst von Rudolf Gross, Achim Marx und Dietrich Einzel ; ”Neu in der 2.
Auflage: Vier vollkommen neue und zahlreiche überarbeitete Aufgaben” - hinterer
Umschlag.

[9] J. B. Johnson. Thermal Agitation of Electricity in Conductors. Nature, 119(2984):50–
51, 1927.

[10] J. B. Johnson. Thermal agitation of electricity in conductors. Phys. Rev., 32(1):97–
109, 1928.

[11] H. Nyquist. Thermal agitation of electric charge in conductors. Phys. Rev., 32:110–
113, Jul 1928.

[12] C. Staender. Compact, fast and reliable cross-correlated current noise thermometers
for milli- and micro-kelvin temperatures. Master thesis, Kirchhoff Institute for
Physics, Heidelberg University, December 2020.

[13] D. Unger. Development and characterization of a high energy resolution and low
background detector module for the IAXO experiment. Master thesis, Kirchhoff
Institute for Physics, Heidelberg University, March 2020.

39


	Introduction
	Theory
	Methods
	Setup
	Experiments

